Combining PSO and FCM for Dynamic Fuzzy Clustering Problems
نویسندگان
چکیده
منابع مشابه
OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملClustering Analysis Method based on Fuzzy C-Means Algorithm of PSO and PPSO with Application in Image Data
The popular fuzzy c-means algorithm (FCM) converges to a local minimum of the objective function. Hence, different initializations may lead to different results. The important issue is how to avoid getting a bad local minimum value to improve the cluster accuracy. The particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. But the main difficulty in applyin...
متن کاملFuzzy C-means and fuzzy swarm for fuzzy clustering problem
0957-4174/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.eswa.2010.07.112 ⇑ Corresponding author. E-mail addresses: [email protected] (H. I org (A. Abraham). Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient,...
متن کاملFuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کاملParameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation
A traditional approach to segmentation of magnetic resonance (MR) images is the fuzzy c-means (FCM) clustering algorithm. The efficacy of FCM algorithm considerably reduces in the case of noisy data. In order to improve the performance of FCM algorithm, researchers have introduced a neighborhood attraction, which is dependent on the relative location and features of neighboring pixels. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014